Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 364
Filtrar
1.
Angew Chem Int Ed Engl ; : e202404505, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598471

RESUMO

Ammonia borane (AB) with 19.6 wt.% H2 content is widely considered a safe and efficient medium for H2 storage and release. Co-based nanocatalysts present strong contenders for replacing precious metal-based catalysts in AB hydrolysis due to their high activity and cost-effectiveness. However, precisely adjusting the active centers and surface properties of Co-based nanomaterials to enhance their activity, as well as suppressing the migration and loss of metal atoms to improve their stability, presents many challenges. In this study, mesoporous-silica-confined bimetallic Co-Cu nanoparticles embedded in nitrogen-doped carbon (CoxCu1-x@NC@mSiO2) were synthesized using a facile mSiO2-confined thermal pyrolysis strategy. The obtained product, an optimized Co0.8Cu0.2@NC@mSiO2 catalyst, exhibits enhanced performance with a turnover frequency of 240.9 molH2∙molmetal∙min-1 for AB hydrolysis at 298 K, surpassing most noble-metal-free catalysts. Moreover, Co0.8Cu0.2@NC@mSiO2 demonstrated magnetic recyclability and extraordinary stability, with a negligible decline of only 0.8% over 30 cycles of use. This enhanced performance was attributed to the synergistic effect between Co and Cu, as well as silica confinement. This work proposes a promising method for constructing noble-metal-free catalysts for AB hydrolysis.

2.
J Colloid Interface Sci ; 665: 613-621, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38552578

RESUMO

The development of polymer film with large electrical displacement is essential for the applications of lightweight and compact energy storage. The dielectric diversity at interface of polymer composite should be addressed to realize the film capacitor with high energy density and dielectric reliability. In this work, poly(vinylidene fluoride-co-chlorotrifluoroethylene) (P(VDF-CTFE)) nanocomposite was incorporated by core-shell nanowire with covalent organic framework (COF) outer coating to alleviate the dielectric mismatch at interface. After the preparation of Ag nanowire through polyol reduction, polyaniline (PANI) and COF layers were sequentially deposited to construct core-shell Ag@polyaniline@covalent organic framework (Ag@PANI@COF) nanowire. According to the unique core-shell architecture, the COF framework is utilized to suppress the remanent polarization while high electrical displacement is preserved by the center Ag nanowire. The maximum energy density of 25.0 J/cm3 at 425 MV/m is obtained in 0.1 wt% stretched Ag@PANI@COF/P(VDF-CTFE) nanocomposite. The presence of core-shell nanowire depresses the distribution distortion of electric field and the diffusion of charge carriers under high field. This work demonstrates an effective method to develop the polymer film with large electrical displacement, and sheds a light on insightful exploration of interfacial polarized mechanism in polymer dielectric composite.

3.
ACS Chem Neurosci ; 15(7): 1456-1468, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38472087

RESUMO

Spinal cord injury (SCI) treatment remains a major challenge. Spinal motor neurons (MNs) are seriously injured in the early stage after SCI, but this has not received sufficient attention. Oxidative stress is known to play a crucial role in SCI pathology. Our studies demonstrated that oxidative stress can cause severe damage to the cytoskeleton of spinal MNs. Docosahexaenoic acid (DHA) has been shown to have beneficial effects on SCI, but the mechanism remains unclear, and no study has investigated the effect of DHA on oxidative stress-induced spinal MN injury. Here, we investigated the effect of DHA on spinal MN injury through in vivo and in vitro experiments, focusing on the cytoskeleton. We found that DHA not only promoted spinal MN survival but, more importantly, alleviated the severe cytoskeletal destruction of these neurons induced by oxidative stress in vitro and in mice with SCI in vivo. In addition, the mechanisms involved were investigated and elucidated. These results not only suggested a beneficial role of DHA in spinal MN cytoskeletal destruction caused by oxidative stress and SCI but also indicated the important role of the spinal MN cytoskeleton in the recovery of motor function after SCI. Our study provides new insights for the formulation of SCI treatment.


Assuntos
Ácidos Docosa-Hexaenoicos , Traumatismos da Medula Espinal , Camundongos , Animais , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico , Neurônios Motores , Estresse Oxidativo , Citoesqueleto , Medula Espinal
4.
Mikrochim Acta ; 191(4): 204, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38492076

RESUMO

Metal-organic gels (MOGs) are unique supramolecular gels that are convenient to synthesize. In this work, a cathodic electrochemiluminescence (ECL) system based on Ag-MOGs as a luminophore and K2S2O8 as a co-reactor was developed. The ECL spectrum of the Ag-MOGs overlapped significantly with the strong UV-Vis spectrum of the SiO2@PANI@AuNPs, which effectively quenched the ECL luminescence of the Ag-MOGs. Relying on the inner filter effect between Ag-MOGs and SiO2@PANI@AuNPs, a novel ECL-IFE immunosensor was developed for the detection of neuron-specific enolase (NSE). Under optimal conditions, the ECL signal of the immunosensor displayed excellent linearity over the NSE concentration range of 10 fg/mL-100 ng/mL. The limit of detection (LOD) was 2.6 fg/mL (S/N = 3) with a correlation coefficient R2 of 0.9975. The ECL immunosensor also exhibited excellent stability and reproducibility for the detection of NSE. The results reported provide a feasible concept for the development analytical methods for the detection of other clinically relevant biomarkers.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Ouro , Dióxido de Silício , Medições Luminescentes/métodos , Imunoensaio/métodos , Técnicas Biossensoriais/métodos , Reprodutibilidade dos Testes , Técnicas Eletroquímicas/métodos , Géis , Fosfopiruvato Hidratase
5.
Opt Lett ; 49(6): 1611, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489463

RESUMO

This publisher's note contains a correction to Opt. Lett.49, 674 (2024)10.1364/OL.509981.

6.
Opt Express ; 32(3): 3891-3911, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297600

RESUMO

In pursuit of enhancing the display performance of gamut extension algorithms across diverse image types while minimizing image dependency, this study introduces a dynamic gamut extension algorithm. The algorithm is designed to extend the sRGB source gamut towards the wide gamut of a laser display. To evaluate its effectiveness, psychophysical experiments were conducted using four distinct image categories: complexions, scenery, objects, and color blocks and bars. The performance of the proposed algorithm was benchmarked against four established color gamut mapping algorithms. The comparative analysis revealed that our algorithm excels in handling wide color gamuts, outperforming the alternatives in terms of preference and the preservation of detail richness.

7.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338942

RESUMO

Zoysia japonica (Zoysia japonica Steud.) is a kind of warm-season turfgrass with many excellent characteristics. However, the shorter green period and longer dormancy caused by cold stress in late autumn and winter are the most limiting factors affecting its application. A previous transcriptome analysis revealed that ethephon regulated genes in chlorophyll metabolism in Zoysia japonica under cold stress. Further experimental data are necessary to understand the effect and underlying mechanism of ethephon in regulating the cold tolerance of Zoysia japonica. The aim of this study was to evaluate the effects of ethephon by measuring the enzyme activity, intermediates content, and gene expression related to ethylene biosynthesis, signaling, and chlorophyll metabolism. In addition, the ethylene production rate, chlorophyll content, and chlorophyll a/b ratio were analyzed. The results showed that ethephon application in a proper concentration inhibited endogenous ethylene biosynthesis, but eventually promoted the ethylene production rate due to its ethylene-releasing nature. Ethephon could promote chlorophyll content and improve plant growth in Zoysia japonica under cold-stressed conditions. In conclusion, ethephon plays a positive role in releasing ethylene and maintaining the chlorophyll content in Zoysia japonica both under non-stressed and cold-stressed conditions.


Assuntos
Etilenos , Compostos Organofosforados , Poaceae , Clorofila A/metabolismo , Poaceae/genética , Etilenos/metabolismo , Clorofila/metabolismo
8.
Poult Sci ; 103(4): 103486, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350385

RESUMO

Eimeria maxima microneme protein 3 (EmMIC3) is pivotal in the initial recognition and attachment of E. maxima sporozoites to host cells. EmMIC3 comprises 5 tandem Type I microneme adhesive repeat (MAR) domains, among which MAR2 of EmMIC3 (EmMAR2) has been identified as the primary determinant of EmMIC3-mediated tissue tropism. Nonetheless, the mechanisms through which EmMAR2 guides the parasite to its invasion site through interactions with host receptors remained largely uncharted. In this study, we employed yeast two-hybrid (YTH) screening assays and shotgun LC-MS/MS analysis to identify EmMAR2 receptors in chicken intestine epithelial cells. ATPase H+ transporting V1 subunit G1 (ATP6V1G1), receptor accessory protein 5 (REEP5), transmembrane p24 trafficking protein (TMED2), and delta 4-desaturase sphingolipid 1 (DEGS1) were characterized as the 4 receptors of EmMAR2 by both assays. By blocking the interaction of EmMAR2 with each receptor using specific antibodies, we observed varying levels of inhibition on the invasion of E. maxima sporozoites, and the combined usage of all 4 antibodies resulted in the most pronounced inhibitory effect. Additionally, the spatio-temporal expression profiles of ATP6V1G1, REEP5, TMED2, and DEGS1 were assessed. The tissue-specific expression patterns of EmMAR2 receptors throughout E. maxima infection suggested that ATP6V1G1 and DEGS1 might play a role in early-stage invasion, whereas TMED2 could be involved in middle and late-stage invasion and REEP5 and DEGS1 may participate primarily in late-stage invasion. Consequently, E. maxima may employ a multitude of ligand-receptor interactions to drive invasion during different stages of infection. This study marks the first report of EmMAR2 receptors at the interface between E. maxima and the host, providing insights into the invasion mechanisms of E. maxima and the pathogenesis of coccidiosis.


Assuntos
Coccidiose , Eimeria tenella , Eimeria , Doenças das Aves Domésticas , Animais , Galinhas/metabolismo , Cromatografia Líquida/veterinária , Micronema , Proteínas de Protozoários/genética , Espectrometria de Massas em Tandem/veterinária , Coccidiose/parasitologia , Coccidiose/veterinária , Intestinos/parasitologia , Células Epiteliais/metabolismo , Doenças das Aves Domésticas/prevenção & controle
9.
Opt Lett ; 49(3): 674-677, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300087

RESUMO

We demonstrate that through inserting a short length of highly birefringent small-core photonic crystal fiber (Hi-Bi SC-PCF) into a soliton fiber laser, the nonlinear polarization rotation effect in this laser can be manipulated, leading to continuous tuning of the output pulse parameters. In experiments, we observed that by adjusting the polarization state of light launched into the Hi-Bi SC-PCF and varying the cavity attenuation, the laser spectral width can be continuously tuned from ∼7.1 to ∼1.7 nm, corresponding to a pulse-width-tuning range from ∼350 fs to ∼1.56 ps. During the parameter tuning, the output pulses strictly follow the soliton area theory, giving an almost constant time-bandwidth-product of ∼0.31. This soliton fiber laser, being capable of continuous parameter tuning, could be applied as the seed source in ultrafast laser systems and may find some applications in nonlinear-optics and soliton-dynamics experiments.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38190682

RESUMO

The label transition matrix has emerged as a widely accepted method for mitigating label noise in machine learning. In recent years, numerous studies have centered on leveraging deep neural networks to estimate the label transition matrix for individual instances within the context of instance-dependent noise. However, these methods suffer from low search efficiency due to the large space of feasible solutions. Behind this drawback, we have explored that the real murderer lies in the invalid class transitions, that is, the actual transition probability between certain classes is zero but is estimated to have a certain value. To mask the invalid class transitions, we introduced a human-cognition-assisted method with structural information from human cognition. Specifically, we introduce a structured transition matrix network (STMN) designed with an adversarial learning process to balance instance features and prior information from human cognition. The proposed method offers two advantages: 1) better estimation effectiveness is obtained by sparing the transition matrix and 2) better estimation accuracy is obtained with the assistance of human cognition. By exploiting these two advantages, our method parametrically estimates a sparse label transition matrix, effectively converting noisy labels into true labels. The efficiency and superiority of our proposed method are substantiated through comprehensive comparisons with state-of-the-art methods on three synthetic datasets and a real-world dataset. Our code will be available at https://github.com/WheatCao/STMN-Pytorch.

11.
Talanta ; 270: 125644, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38218005

RESUMO

Sensitive detection of pro-gastrin-releasing peptide (Pro-GRP) is crucial because it is a highly sensitive and specific tumor marker for small cell lung cancer. Herein, we synthesized an efficient luminescent europium metal-organic framework and developed a sandwich ECL immunosensor for the sensitive detection of Pro-GRP, which used Eu3+ as the central ion and 2,4,6-tri (4-carboxyphenyl)-1,3,5-triazine (H3TATB) as the organic ligand. H3TATB acted as a strong absorbing reagent and transferred its energy to Eu3+ via the antenna effect to enhance the ECL response signal of Eu3+. As per calculations, the ECL efficiency of Eu-TATB, which was a promising ECL luminophore, was up to 130 %. The Cu2O cube worked as a substrate to assist the electron transfer and was used as a co-reaction accelerator to catalyze S2O82- to produce more SO4•- and then enhance the ECL intensity of Eu-TATB. Under optimal experimental conditions, the ECL immunosensor had a linear range of 5 fg mL-1-50 ng mL-1 for detecting Pro-GRP with a detection limit of 1.6 fg mL-1; moreover, it demonstrated excellent stability and specificity and has been successfully applied for detecting Pro-GRP in the human serum.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Estruturas Metalorgânicas , Humanos , Peptídeo Liberador de Gastrina , Európio , Medições Luminescentes , Técnicas Eletroquímicas , Imunoensaio , Limite de Detecção
12.
Vaccines (Basel) ; 12(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276673

RESUMO

Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan that can elicit a robust immune response during infection. Macrophage cells have been shown to play an important role in the immune response against T. gondii. In our previous study, the eukaryotic translation initiation factor 5A (eIF-5A) gene of T. gondii was found to influence the invasion and replication of tachyzoites. In this study, the recombinant protein of T. gondii eIF-5A (rTgeIF-5A) was incubated with murine macrophages, and the regulatory effect of TgeIF-5A on macrophages was characterized. Immunofluorescence assay showed that TgeIF-5A was able to bind to macrophages and partially be internalized. The Toll-like receptor 4 (TLR4) level and chemotaxis of macrophages stimulated with TgeIF-5A were reduced. However, the phagocytosis and apoptosis of macrophages were amplified by TgeIF-5A. Meanwhile, the cell viability experiment indicated that TgeIF-5A can promote the viability of macrophages, and in the secretion assays, TgeIF-5A can induce the secretion of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and nitric oxide (NO) from macrophages. These findings demonstrate that eIF-5A of T. gondii can modulate the immune response of murine macrophages in vitro, which may provide a reference for further research on developing T. gondii vaccines.

13.
Poult Sci ; 103(2): 103359, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128458

RESUMO

IFN-γ plays a crucial role in resisting intracellular parasitic protozoa, such as Eimeria species. In our previous study, we identified 4 molecules derived from Eimeria maxima (E. maxima) that significantly inhibited IFN-γ production. However, the mechanism underlying this inhibitory effect remains unknown. In this study, we first investigated the effects of these 4 IFN-γ inhibitory molecules on the expression levels of chicken Toll-like receptors (chTLRs), IL-12, IL-10, TGF-ß, and TNF-α in chicken macrophage HD11 and bone marrow-derived dendritic cells (BMDCs). The results demonstrated that these 4 inhibitory molecules significantly downregulated the mRNA levels of chTLR-2, chTLR-4, chTLR-21, and both mRNA and protein levels of IL-12. Subsequently, to clarify the effects of these 4 inhibitory molecules on the IL-12 secretion-related signaling pathways in chicken macrophages, qRT-PCR and Western blot were used to detect the changes of key molecules involved in the signaling pathways of IL-12 secretion (NF-κB, ERK1/2, p38, JNK, STAT3) following coincubation with these inhibitory molecules. Finally, RNAi was employed to verify the function of key molecules in the signaling pathway. The results revealed a significant upregulation in the expression of ERK1/2 phosphorylated protein induced by the 4 inhibitory molecules. Knockdown of the ERK1/2 gene significantly reduced the inhibitory effect of the 4 E. maxima inhibitory molecules on IL-12. These findings indicate that the 4 inhibitory molecules can inhibit the secretion of IL-12 by upregulating the expression of ERK1/2 phosphorylated protein, which is a key molecule in the ERK-MAPK pathway. Our study may contribute to elucidating the mechanisms underlying immune evasion during E. maxima infections, thereby providing new insights for the control of chicken coccidiosis.


Assuntos
Galinhas , Eimeria , Animais , Interleucina-12/genética , Interleucina-12/metabolismo , Transdução de Sinais , Macrófagos , RNA Mensageiro/metabolismo
14.
Vet Res ; 54(1): 119, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38093398

RESUMO

Clinical avian coccidiosis is typically caused by coinfection with several Eimeria species. Recombinant protein and DNA vaccines have shown promise in controlling coccidiosis. On this basis, DNA vaccines that encode multiple epitopes from different Eimeria species may provide broad protection against coinfections. In this study, we designed a fusion gene fragment, 14EGT, that contained concentrated T-cell epitopes from four common antigens of Eimeria species (14-3-3, elongation factor 2, glyceraldehyde-3-phosphate dehydrogenase, and transhydrogenase). The multiepitope DNA vaccine pVAX1-14EGT and recombinant protein vaccine pET-32a-14EGT (r14EGT) were then created based on the 14EGT fragment. Subsequently, cellular and humoral immune responses were measured in vaccinated chickens. Vaccination-challenge trials were also conducted, where the birds were vaccinated with the 14EGT preparations and later exposed to single or multiple Eimeria species to evaluate the protective efficacy of the vaccines. According to the results, vaccination with 14EGT preparations effectively increased the proportions of CD4+ and CD8+ T cells and the levels of Th1 and Th2 hallmark cytokines. The levels of serum IgG antibodies were also significantly increased. Animal vaccination trials revealed alleviated enteric lesions, weight loss, and oocyst output compared to those of the control groups. The preparations were found to be moderately effective against single Eimeria species, with the anticoccidial index (ACI) ranging from 160 to 180. However, after challenge with multiple Eimeria species, the protection provided by the 14EGT preparations was not satisfactory, with ACI values of 142.18 and 146.41. Collectively, the results suggest that a multiepitope vaccine that encodes the T-cell epitopes of common antigens derived from Eimeria parasites could be a potential and effective strategy to control avian coccidiosis.


Assuntos
Coccidiose , Eimeria tenella , Eimeria , Doenças das Aves Domésticas , Vacinas Protozoárias , Vacinas de DNA , Animais , Eimeria/genética , Galinhas , Epitopos de Linfócito T , Linfócitos T CD8-Positivos , Antígenos de Protozoários/genética , Coccidiose/prevenção & controle , Coccidiose/veterinária , Proteínas Recombinantes , Eimeria tenella/genética
15.
Vaccines (Basel) ; 11(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38140198

RESUMO

Haemonchus contortus is a gastrointestinal parasite that adversely impacts small ruminants, resulting in a notable reduction in animal productivity. In the current investigation, we developed a nanovaccine by encapsulating the recombinant protein rHcES-15, sourced from the excretory/secretory products of H. contortus, within biodegradable poly (D, L-lactide-co-glycolide) (PLGA) nanoparticles (NPs). The development of this nanovaccine involved the formulation of PLGA NPs using a modified double emulsion solvent evaporation technique. Scanning electron microscopy (SEM)verified the successful encapsulation of rHcES-15 within PLGA NPs, exhibiting a size range of 350-400 nm. The encapsulation efficiency (EE) of the antigen in the nanovaccine was determined to be 72%. A total of forty experimental mice were allocated into five groups, with the nanovaccine administered on day 0 and the mice euthanized at the end of the 14-day trial. The stimulation index (SI) from the mice subjected to the nanovaccine indicated heightened lymphocyte proliferation (*** p < 0.001) and a noteworthy increase in anti-inflammatory cytokines (IL-4, IL-10, and IL-17). Additionally, the percentages of T-cells (CD4+, CD8+) and dendritic cell phenotypes (CD83+, CD86+) were significantly elevated (** p < 0.01, *** p < 0.001) in mice inoculated with the nanovaccine compared to control groups and the rHcES-15 group. Correspondingly, higher levels of antigen-specific serum immunoglobulins (IgG1, IgG2a, IgM) were observed in response to the nanovaccine in comparison to both the antigenic (rHcES-15) and control groups (* p < 0.05, ** p < 0.01). In conclusion, the data strongly supports the proposal that the encapsulation of rHcES-15 within PLGA NPs effectively triggers immune cells in vivo, ultimately enhancing the antigen-specific adaptive immune responses against H. contortus. This finding underscores the promising potential of the nanovaccine, justifying further investigations to definitively ascertain its efficacy.

16.
Front Immunol ; 14: 1291379, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022512

RESUMO

Understanding the determinants of host and tissue tropisms among parasites of veterinary and medical importance has long posed a substantial challenge. Among the seven species of Eimeria known to parasitize the chicken intestine, a wide variation in tissue tropisms has been observed. Prior research suggested that microneme protein (MIC) composed of microneme adhesive repeat (MAR) domain responsible for initial host cell recognition and attachment likely dictated the tissue tropism of Eimeria parasites. This study aimed to explore the roles of MICs and their associated MARs in conferring site-specific development of E. acervuline, E. maxima, and E. mitis within the host. Immunofluorescence assays revealed that MIC3 of E. acervuline (EaMIC3), MIC3 of E. maxima (EmMIC3), MIC3 of E. mitis (EmiMIC3), MAR3 of EaMIC3 (EaMIC3-MAR3), MAR2 of EmMIC3 (EmMIC3-MAR2), and MAR4 of EmiMIC3 (EmiMIC3-MAR4), exhibited binding capabilities to the specific intestinal tract where these parasites infect. In contrast, the invasion of sporozoites into host intestinal cells could be significantly inhibited by antibodies targeting EaMIC3, EmMIC3, EmiMIC3, EaMIC3-MAR3, EmMIC3-MAR2, and EmiMIC3-MAR4. Substitution experiments involving MAR domains highlighted the crucial roles of EaMIC3-MAR3, EmMIC3-MAR2, and EmiMIC3-MAR4 in governing interactions with host ligands. Furthermore, animal experiments substantiated the significant contribution of EmiMIC3, EmiMIC3-MAR4, and their polyclonal antibodies in conferring protective immunity to Eimeria-affiliated birds. In summary, EaMIC3, EmMIC3, and EmiMIC3 are the underlying factors behind the diverse tissue tropisms exhibited by E. acervuline, E. maxima, and E. mitis, and EaMIC3-MAR3, EmMIC3-MAR2, and EmiMIC3-MAR4 are the major determinants of MIC-mediated tissue tropism of each parasite. The results illuminated the molecular basis of the modes of action of Eimeria MICs, thereby facilitating an understanding and rationalization of the marked differences in tissue tropisms among E. acervuline, E. maxima, and E. mitis.


Assuntos
Coccidiose , Eimeria , Doenças das Aves Domésticas , Animais , Micronema , Proteínas , Galinhas/parasitologia
17.
Poult Sci ; 102(12): 103098, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37797491

RESUMO

It has been reported that infection of chicken coccidian could inhibit the production of Th1 cytokine IFN-γ, thereby evading clearance by the host immune system. The present study aimed to have a further investigation into the effects of Eimeria maxima IFN-γ inhibitory molecules (EmHPSP-2 and EmHPSP-3) on the immune function of chicken peripheral blood mononuclear cells (PBMC) and various T cell subsets. First, separated PBMC or sorted T cell subsets were used for incubation with recombinant proteins of EmHPSP-2 (rEmHPSP-2) and EmHPSP-3 (rEmHPSP-3). Subsequently, the effects of rEmHPSP-2 and rEmHPSP-3 on proliferative capacity, nitric oxide (NO) release and mRNA levels of cytokines of the above cells were detected. The sorting purity of CD8+, CD4+ CD25-, CD4+, and CD4+ CD25+ T cells was 93.01, 88.88, 87.04, and 81.26%, respectively. The NO release of PBMC was significantly inhibited by rEmHPSP-2 and rEmHPSP-3. The proliferation of PBMC and CD4+ T cells was significantly inhibited by rEmHPSP-2 and rEmHPSP-3, whereas CD8+, CD4+ CD25-, and CD4+ CD25+ T cells was significantly promoted by the 2 proteins. The 2 proteins significantly downregulated interferon-gamma (IFN-γ) mRNA level, upregulated the transcriptional levels of interleukin-10 (IL-10) and transforming growth factor-beta1 (TGF-ß1) in PBMC. IFN-γ and IL-2 transcriptional levels were markedly inhibited in CD8+ T cells. IFN-γ transcriptional level was significantly inhibited, but IL-4 was promoted by rEmHPSP-2 and rEmHPSP-3 in CD4+ CD25- T cells. Meanwhile, the inhibitory effects of rEmHPSP-2 and rEmHPSP-3 on the transcriptional levels of IFN-γ and IL-2 were more obvious in CD4+ T cells containing CD25+ cells compared with the CD25+ cells depletion group. It was found that IL-10, TGF-ß1, and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) mRNA levels were significantly upregulated upon stimulation of chicken CD4+ CD25+ T cells by proteins. This study is not only of great significance to clarify the immune evasion mechanism of chicken coccidia, but also provides candidate antigen molecules for development of a novel vaccine against chicken coccidiosis.


Assuntos
Eimeria , Interleucina-10 , Animais , Interferon gama/genética , Interferon gama/metabolismo , Galinhas/metabolismo , Leucócitos Mononucleares , Linfócitos T CD8-Positivos , Interleucina-2 , Fator de Crescimento Transformador beta1 , Subpopulações de Linfócitos T/metabolismo , Citocinas , Proteínas Recombinantes , RNA Mensageiro , Imunidade
18.
Nat Commun ; 14(1): 6177, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794036

RESUMO

Artificial chiral materials and nanostructures with strong and tuneable chiroptical activities, including sign, magnitude, and wavelength distribution, are useful owing to their potential applications in chiral sensing, enantioselective catalysis, and chiroptical devices. Thus, the inverse design and customized manufacturing of these materials is highly desirable. Here, we use an artificial intelligence (AI) guided robotic chemist to accurately predict chiroptical activities from the experimental absorption spectra and structure/process parameters, and generate chiral films with targeted chiroptical activities across the full visible spectrum. The robotic AI-chemist carries out the entire process, including chiral film construction, characterization, and testing. A machine learned reverse design model using spectrum embedded descriptors is developed to predict optimal structure/process parameters for any targeted chiroptical property. A series of chiral films with a dissymmetry factor as high as 1.9 (gabs ~ 1.9) are identified out of more than 100 million possible structures, and their feasible application in circular polarization-selective color filters for multiplex laser display and switchable circularly polarized (CP) luminescence is demonstrated. Our findings not only provide chiral films with the highest reported chiroptical activity, but also have great fundamental value for the inverse design of chiroptical materials.

19.
Vet Res ; 54(1): 80, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37740213

RESUMO

Th9 cells play a crucial role in parasite immunity. The development of Th9 cells is facilitated by several cytokines. Key transcription factors, such as STAT6, STAT5, and PU.1, are known to enhance IL-9 expression during the Th9 immune response. NF-κB-mediated transduction pathways participate in the induction of IL-9. In a previous study, we unveiled a unique ribosomal protein derived from Haemonchus contortus excretory-secretory proteins (HcESPs) that interact with host Th9 cells. In the present study, the effects of the Haemonchus contortus ribosomal protein L6 domain DE-containing protein (HcL6) on IL-9 secretion, Th9 differentiation, and IL-9 transcription were assessed by employing ELISA, flow cytometry, and qPCR methodologies. The observations revealed the transcriptional upregulation of several key genes within the Th9 immune response pathway. Moreover, silencing STAT6, PU.1, and NF-κB was found to attenuate the Th9 immune response. In this study, we unveiled the Th9 immune response-inducing capabilities of HcL6 and elucidated some of its underlying mechanisms. These findings suggest that HcL6 is an immunostimulatory antigen capable of inducing the Th9 immune response. These insights could prove instrumental in identifying potential candidate antigens for the development of immunoprophylactic strategies against H. contortus infections.


Assuntos
Haemonchus , NF-kappa B , Animais , Cabras , Interleucina-9/genética , Imunidade
20.
Vaccines (Basel) ; 11(9)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37766114

RESUMO

Trichinella spiralis (T. spiralis), a nematode parasite, is the major cause of Trichinellosis, a zoonotic disease. A key role of MAPR in the reproductive system is to maintain pregnancy. Previous studies found that antihormone drug design and vaccine therapy of recombinant protein (rTs-MAPRC2) control T. spiralis infection. The current study investigates the inhibitory effects of different ratios of antibodies against Ts-MAPRC2 on the development of muscle larvae (ML) and newborn larvae (NBL). First, we performed indirect immunofluorescence assays and examined the effects of rTs-MAPRC2-Ab on ML and NBL in vitro as well as in vivo. Afterward, siRNA-Ts-MAPRC2 was transfected into T. spiralis muscle larvae. Following that, Ts-MAPRC2 protein was detected by Western Blotting, and mRNA levels were determined by qPCR. We also assessed whether siRNA-treated NBLs were infective by analyzing muscle larvae burden (MLs). Our results showed that rTs-MAPRC2-Ab greatly inhibited the activity of the Ts-MAPRC2 in ML and NBL of T. spiralis and rTs-MAPRC2-Ab reduced larval infectivity and survival in the host in a dose-dependent manner (1:50, 1:200, 1:800 dilutions). Furthermore, siRNA-Ts-MAPRC2 effectively silenced the Ts-MAPRC2 gene in muscle larvae (ML) in vitro, as well as in newborn larvae (NBL) of T. spiralis in vivo. In addition, siRNA-Ts-MAPRC2 (siRNA180, siRNA419, siRNA559) reduced host larval survival and infectivity significantly. This study, therefore, suggests that Ts-MAPRC2 might be a novel molecular target useful in the development of vaccines against T. spiralis infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA